LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamical model of antishadowing of the nuclear gluon distribution

Photo from academic.microsoft.com

We explore the theoretical observation that within the leading twist approximation, the nuclear effects of shadowing and antishadowing in non-perturbative nuclear parton distribution functions (nPDFs) at the input QCD evolution… Click to show full abstract

We explore the theoretical observation that within the leading twist approximation, the nuclear effects of shadowing and antishadowing in non-perturbative nuclear parton distribution functions (nPDFs) at the input QCD evolution scale involve diffraction on nucleons of a nuclear target and originate from merging of two parton ladders belonging to two different nucleons, which are close in the rapidity space. It allows us to propose that for a given momentum fraction $x_P$ carried by the diffractive exchange, nuclear shadowing and antishadowing should compensate each other in the momentum sum rule for nPDFs locally on the interval $\ln (x/x_P) \le 1$. We realize this by constructing an explicit model of nuclear gluon antishadowing, which has a wide support in $x$, $10^{-4} < x < 0.2$, peaks at $x=0.05-0.1$ at the level of $\approx 15$\% for $^{208}$Pb at $Q_0^2=4$ GeV$^2$ and rather insignificantly depends on details of the model. We also studied the impact parameter $b$ dependence of antishadowing and found it to be slow.

Keywords: model antishadowing; antishadowing nuclear; nuclear gluon; dynamical model; model; distribution

Journal Title: Physical Review C
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.