In this article, we calculate the magnetization and other thermodynamical quantities for strongly magnetized quark matter within the Nambu-Jona-Lasinio model at zero temperature. We assume two scenarios, chemically equilibrated charge… Click to show full abstract
In this article, we calculate the magnetization and other thermodynamical quantities for strongly magnetized quark matter within the Nambu-Jona-Lasinio model at zero temperature. We assume two scenarios, chemically equilibrated charge neutral matter present in the interior of compact stars and zero-strangeness isospin-symmetric matter created in nuclear experiments. We show that the magnetization oscillates with density but in a much more smooth form than what was previously shown in the literature. As a consequence, we do not see the unphysical behavior in the pressure in the direction perpendicular to the magnetic field that was previously found. Finally, we also analyze the effects of a vector interaction on our results.
Click one of the above tabs to view related content.