LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Consistent mean-field description of the C12 + C12 optical potential at low energies and the astrophysical S factor

Photo by glenncarstenspeters from unsplash

The nuclear mean-field potential built up by the $^{12}$C+$^{12}$C interaction at energies relevant for the carbon burning process is calculated in the double-folding model (DFM) using the realistic ground-state density… Click to show full abstract

The nuclear mean-field potential built up by the $^{12}$C+$^{12}$C interaction at energies relevant for the carbon burning process is calculated in the double-folding model (DFM) using the realistic ground-state density of $^{12}$C and the CDM3Y3 density dependent nucleon-nucleon (NN) interaction, with the rearrangement term properly included. To validate the use of a density dependent NN interaction in the DFM calculation in the low-energy regime, an adiabatic approximation is suggested for the nucleus-nucleus overlap density. The reliability of the nuclear mean-field potential predicted by this low-energy version of the DFM is tested in a detailed optical model analysis of the elastic $^{12}$C+$^{12}$C scattering data at energies below 10 MeV/nucleon. The folded mean-field potential is then used to study the astrophysical $S$ factor of the $^{12}$C+$^{12}$C fusion in the barrier penetration model. Without any adjustment of the potential strength, our results reproduce very well the non-resonant behavior of the $S$ factor of the $^{12}$C+$^{12}$C fusion over a wide range of energies.

Keywords: field; mean field; potential; c12; astrophysical factor

Journal Title: Physical Review C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.