LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective operators in two-nucleon systems

Photo from academic.microsoft.com

Effective Hamiltonians and effective electroweak operators are calculated with the Okubo-Lee-Suzuki formalism for two-nucleon systems. Working within a harmonic oscillator basis, first without and then with a confining harmonic oscillator… Click to show full abstract

Effective Hamiltonians and effective electroweak operators are calculated with the Okubo-Lee-Suzuki formalism for two-nucleon systems. Working within a harmonic oscillator basis, first without and then with a confining harmonic oscillator trap, we demonstrate the effects of renormalization on observables calculated for truncated basis spaces. We illustrate the renormalization effects for the root-mean-square point-proton radius, electric quadrupole moment, magnetic dipole moment, Gamow-Teller transition and neutrinoless double-beta decay operator using nucleon-nucleon interactions from chiral Effective Field Theory. Renormalization effects tend to be larger in the weaker traps and smaller basis spaces suggesting applications to heavier nuclei with transitions dominated by weakly-bound nucleons would be subject to more significant renormalization effects within achievable basis spaces.

Keywords: renormalization effects; nucleon systems; basis spaces; two nucleon

Journal Title: Physical Review C
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.