We introduce a new approach for jet physics studies using subtracted cumulants of jet substructure observables, which are shown to be insensitive to contributions from soft-particle emissions uncorrelated with the… Click to show full abstract
We introduce a new approach for jet physics studies using subtracted cumulants of jet substructure observables, which are shown to be insensitive to contributions from soft-particle emissions uncorrelated with the hard process. Therefore subtracted cumulants allow comparisons between theoretical calculations and experimental measurements without the complication of large background contaminations such as underlying and pile-up events in hadron collisions. We test our method using subtracted jet mass cumulants by comparing Monte Carlo simulations to analytic calculations performed using soft-collinear effective theory. We find that, for proton-proton collisions, the method efficiently eliminates contributions from multiparton interactions and pile-up events. We also find within theoretical uncertainty our analytic calculations are in good agreement with the subtracted cumulants calculated by using ATLAS jet mass measurements.
               
Click one of the above tabs to view related content.