LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finite tidal effects in GW170817: Observational evidence or model assumptions?

Photo from wikipedia

After the detection of gravitational waves caused by the coalescence of compact objects in the mass range of neutron stars, GW170817, several studies have searched for an imprint of tidal… Click to show full abstract

After the detection of gravitational waves caused by the coalescence of compact objects in the mass range of neutron stars, GW170817, several studies have searched for an imprint of tidal effects in the signal, employing different model assumptions. One important distinction is whether or not to assume that both objects are neutron stars and obey the same equation of state. Some studies assumed independent properties. Others assume a universal equation of state, and in addition that the tidal deformability follows certain phenomenological relations. An important question is whether the gravitational-wave data alone constitute observational evidence for finite tidal effects. All studies provide Bayesian credible intervals, often without sufficiently discussing the impact of prior assumptions, especially in the case of lower limits on the neutron-star tidal deformability or radius. In this article, we scrutinize the implicit and explicit prior assumptions made in those studies. Our findings strongly indicate that existing lower credible bounds are mainly a consequence of prior assumptions combined with information gained about the system's masses. Importantly, those lower bounds are typically not informed by the observation of tidal effects in the gravitational-wave signal. Thus, regarding them as observational evidence might be misleading without a more detailed discussion. Further, we point out technical problems and conceptual inconsistencies in existing studies. We also assess the limitations due to systematic waveform model uncertainties in a novel way, demonstrating that differences between existing models are not guaranteed to be small enough for an unbiased estimation of lower bounds on the tidal deformability. Finally, we propose strategies for gravitational-wave data analysis designed to avoid some of the problems we uncovered.

Keywords: finite tidal; model assumptions; observational evidence; tidal effects

Journal Title: Physical Review D
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.