LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unequal mass binary neutron star simulations with neutrino transport: Ejecta and neutrino emission

Photo from wikipedia

We present twelve new simulations of unequal mass neutron star mergers. The simulations were preformed with the SpEC code, and utilize nuclear-theory based equations of state and a two-moment gray… Click to show full abstract

We present twelve new simulations of unequal mass neutron star mergers. The simulations were preformed with the SpEC code, and utilize nuclear-theory based equations of state and a two-moment gray neutrino transport scheme with an improved energy estimate based on evolving the number density. We model the neutron stars with the SFHo, LS220 and DD2 equations of state (EOS) and we study the neutrino and matter emission of all twelve models to search for robust trends between binary parameters and emission characteristics. We find that the total mass of the dynamical ejecta exceeds $0.01M_\odot$ only for SFHo with weak dependence on the mass-ratio across all models. We find that the ejecta have a broad electron fraction ($Y_e$) distribution ($\approx 0.06-0.48$), with mean $0.2$. $Y_e$ increases with neutrino irradiation over time, but decreases with increasing binary asymmetry. We also find that the models have ejecta with a broad asymptotic velocity distribution ($\approx 0.05-0.7c$). The average velocity lies in the range $0.2c - 0.3c$ and decreases with binary asymmetry. Furthermore, we find that disk mass increases with binary asymmetry and stiffness of the EOS. The $Y_e$ of the disk increases with softness of the EOS. The strongest neutrino emission occurs for the models with soft EOS. For (anti) electron neutrinos we find no significant dependence of the magnitude or angular distribution or neutrino luminosity with mass-ratio. The heavier neutrino species have a luminosity dependence on mass-ratio but an angular distribution which does not change with mass-ratio.

Keywords: neutrino transport; emission; neutron star; unequal mass; mass; neutrino

Journal Title: Physical Review D
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.