LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topological vacuum structure of the Schwinger model with matrix product states

Photo from wikipedia

We numerically study the single-flavor Schwinger model with a topological $\theta$-term, which is practically inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical methods… Click to show full abstract

We numerically study the single-flavor Schwinger model with a topological $\theta$-term, which is practically inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical methods based on tensor networks, especially the one-dimensional matrix product states, we explore the non-trivial $\theta$-dependence of several lattice and continuum quantities in the Hamiltonian formulation. In particular, we compute the ground-state energy, the electric field, the chiral fermion condensate, and the topological vacuum susceptibility for positive, zero, and even negative fermion mass. In the chiral limit, we demonstrate that the continuum model becomes independent of the vacuum angle $\theta$, thus respecting CP invariance, while lattice artifacts still depend on $\theta$. We also confirm that negative masses can be mapped to positive masses by shifting $\theta\rightarrow \theta +\pi$ due to the axial anomaly in the continuum, while lattice artifacts non-trivially distort this mapping. This mass regime is particularly interesting for the (3+1)-dimensional QCD analog of the Schwinger model, the sign problem of which requires the development and testing of new numerical techniques beyond the conventional Monte Carlo approach.

Keywords: theta; product states; matrix product; vacuum; model; schwinger model

Journal Title: Physical Review D
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.