LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Particle acceleration in relativistic turbulence: A theoretical appraisal

Photo by bagasvg from unsplash

We discuss the physics of stochastic particle acceleration in relativistic MHD turbulence, combining numerical simulations of test-particle acceleration in synthetic wave turbulence spectra with detailed analytical estimates. In particular, we… Click to show full abstract

We discuss the physics of stochastic particle acceleration in relativistic MHD turbulence, combining numerical simulations of test-particle acceleration in synthetic wave turbulence spectra with detailed analytical estimates. In particular, we study particle acceleration in wave-like isotropic fast mode turbulence, in Alfv\'en and slow Goldreich-Sridhar type wave turbulence (properly accounting for local anisotropy effects), including resonance broadening due to wave decay and pitch-angle randomization. At high particle rigidities, the contributions of those three modes to acceleration are comparable to within an order of magnitude, as a combination of several effects (partial disappearance of transit-time damping for fast modes, increased scattering rate for Alfv\'en and slow modes due to resonance broadening). Additionally, we provide analytical arguments regarding acceleration beyond the regime of MHD wave turbulence, addressing the issue of non-resonant acceleration in a turbulence comprised of structures rather than waves, as well as the issue of acceleration in small-scale parallel electric fields. Finally, we compare our results to the existing literature and provide ready-to-use formulas for applications to high-energy astrophysical phenomenology.

Keywords: turbulence; particle acceleration; wave turbulence; acceleration relativistic; acceleration

Journal Title: Physical Review D
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.