LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating the detection of dark matter subhalos as extended sources with Fermi -LAT

Photo by karsten_wuerth from unsplash

Cold dark matter (DM) models for structure formation predict that DM subhalos are present in the Galaxy. In the standard paradigm of DM as weakly interacting massive particle, subhalos are… Click to show full abstract

Cold dark matter (DM) models for structure formation predict that DM subhalos are present in the Galaxy. In the standard paradigm of DM as weakly interacting massive particle, subhalos are expected to shine in gamma rays and to provide a signal detectable with current instruments, notably with the Large Area Telescope (LAT) aboard the Fermi~satellite. This is the main motivation behind searches for DM signals towards dwarf spheroidal galaxies and unidentified Fermi-LAT sources. A significant angular extension detected from unassociated sources located at relatively high latitudes is considered a "smoking gun" signature for identifying DM subhalos. In the present work, we systematically explore, by means of state-of-the-art models of cold DM halos in the Galaxy, the detectability of extended subhalos with Fermi-LAT. We simulate a DM signal exploring different assumptions of subhalos distribution in the Galaxy and DM profile, and reconstruct its flux through a realistic Fermi-LAT analysis pipeline. In the most optimistic case, we show that a detection of extended DM subhalos can be made for annihilation cross sections higher than $3 \times 10^{-26}$ cm$^3$/s (for a 100 GeV DM mass), still compatible with existing gamma-ray constraints, and that, in this case, the preference for extension of the source (vs point-like hypothesis) is significant. For fainter signals, instead, halos not only do not show significant extension, but they are not even detectable significantly as point-like sources.

Keywords: investigating detection; fermi lat; dark matter; subhalos

Journal Title: Physical Review D
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.