We study the Bose condensation of scalar dark matter in the presence of both gravitational and self-interactions. Axions and other scalar dark matter in gravitationally bound miniclusters or dark matter… Click to show full abstract
We study the Bose condensation of scalar dark matter in the presence of both gravitational and self-interactions. Axions and other scalar dark matter in gravitationally bound miniclusters or dark matter halos are expected to condense into Bose-Einstein condensates called Bose stars. This process has been shown to occur through attractive self-interactions of the axion-like particles or through the field's self gravitation. We show that in the high-occupancy regime of scalar dark matter, the Boltzmann collision integral does not describe either gravitaitonal or self-interactions, and derive kinetic equations valid for these interactions. We use this formalism to compute relaxation times for the Bose-Einstein condensation, and find that condensation into Bose stars could occur within the lifetime of the universe. The self-interactions reduce the condensation time only when they are very strong.
               
Click one of the above tabs to view related content.