LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Taylor expansions on Lefschetz thimbles

Photo by sammachala from unsplash

Thimble regularization is a possible solution to the sign problem, which is evaded by formulating quantum field theories on manifolds where the imaginary part of the action stays constant (Lefschetz… Click to show full abstract

Thimble regularization is a possible solution to the sign problem, which is evaded by formulating quantum field theories on manifolds where the imaginary part of the action stays constant (Lefschetz thimbles). A major obstacle is due to the fact that one in general needs to collect contributions coming from more than one thimble. Here we explore the idea of performing Taylor expansions on Lefschetz thimbles. We show that in some cases we can compute expansions in regions where only the dominant thimble contributes to the result in such a way that these (different, disjoint) regions can be bridged. This can most effectively be done via Pad\'e approximants. In this way multi-thimble simulations can be circumvented. The approach can be trusted provided we can show that the analytic continuation we are performing is a legitimate one, which thing we can indeed show. We briefly discuss two prototypal computations, for which we obtained a very good control on the analytical structure (and singularities) of the results. All in all, the main strategy that we adopt is supposed to be valuable not only in the thimble approach, which thing we finally discuss.

Keywords: taylor expansions; expansions lefschetz; lefschetz thimbles

Journal Title: Physical Review D
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.