LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Revisiting transverse momentum broadening in dense QCD media

Photo from wikipedia

We reconsider the problem of transverse momentum broadening of a highly-energetic parton suffering multiple scatterings in dense colored media, such as the thermal Quark-Gluon plasma or large nuclei. In the… Click to show full abstract

We reconsider the problem of transverse momentum broadening of a highly-energetic parton suffering multiple scatterings in dense colored media, such as the thermal Quark-Gluon plasma or large nuclei. In the framework of Moliere's theory of multiple scattering we re-derive a simple analytic formula, to be used in jet quenching phenomenology, that accounts for both the multiple soft and hard Rutherford scattering regimes. Further, we discuss the sensitivity of momentum broadening to modeling of the non-perturbative infrared sector by presenting a detailed analytic and numerical comparison between the two widely used models in phenomenology: the Hard Thermal Loop and the Gyulassy-Wang potentials. We show that for the relevant values of the parameters the non-universal, model dependent contributions are negligible, at LHC, RHIC and EIC energies thus consolidating the predictive power of jet quenching theory.

Keywords: transverse momentum; momentum; broadening dense; momentum broadening; revisiting transverse

Journal Title: Physical Review D
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.