LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dark sector assisted low scale leptogenesis from three body decay

Photo from wikipedia

We study the possibility of realising tree level leptogenesis from three body decay, dark matter and neutrino mass in a minimal framework. We propose a first of its kind model… Click to show full abstract

We study the possibility of realising tree level leptogenesis from three body decay, dark matter and neutrino mass in a minimal framework. We propose a first of its kind model to implement the idea of leptogenesis from three body decay where CP asymmetry arises from interference of multiple tree level diagrams. The standard model is extended by three heavy singlet fermions, one scalar singlet and one scalar doublet with appropriate discrete charges. Two of these singlet fermions not only play non-trivial roles in generating light neutrino mass at radiative level in scotogenic fashion, but also act as mediators in three body decay of the third singlet fermion leading to desired CP asymmetry through interference of tree level diagrams. With just one additional field compared to the minimal scotogenic model, we show that successful leptogenesis can occur at a scale as low as 1 TeV which is lower than the leptogenesis scale found for scotogenic model. Also, the realisation of this tree level three body decay leptogenesis naturally leads to a two component scalar singlet-doublet dark matter scenario offering a rich phenomenology. Apart from having interesting interplay of different couplings involved in processes related to both leptogenesis and dark matter, the model can also be tested at different experiments due to the existence of its particle spectrum at TeV scale.

Keywords: leptogenesis; leptogenesis three; three body; body decay; level

Journal Title: Physical Review D
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.