LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum Love numbers

Photo by hikiapp from unsplash

The response of a gravitating object to an external tidal field is encoded in its Love numbers, which identically vanish for classical blackholes (BHs). Here we show, using standard time-independent… Click to show full abstract

The response of a gravitating object to an external tidal field is encoded in its Love numbers, which identically vanish for classical blackholes (BHs). Here we show, using standard time-independent quantum perturbation theory, that for a quantum BH, generically, the Love numbers are nonvanishing and negative, and that their magnitude depends on the lowest lying levels of the quantum spectrum of the BH. We calculate the quadrupolar electric quantum Love number of nonrotating BHs and show that it depends most strongly on the first excited level of the quantum BH. We then compare our results to the same Love number of exotic ultra compact objects and to that of classical compact stars and highlight their different parametric dependence. Finally, we discuss the detectability of the quadrupolar quantum Love number in future precision gravitational-wave observations and show that, under favourable circumstances, its magnitude is large enough to imprint an observable signature on the gravitational waves emitted during the inspiral phase of two moderately spinning BHs.

Keywords: love number; quantum love; love numbers

Journal Title: Physical Review D
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.