LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mass renormalization in lattice simulations of false vacuum decay

Photo from wikipedia

False vacuum decay, a quantum mechanical first-order phase transition in scalar field theories, is an important phenomenon in early universe cosmology. Recently, real-time semi-classical techniques based on ensembles of lattice… Click to show full abstract

False vacuum decay, a quantum mechanical first-order phase transition in scalar field theories, is an important phenomenon in early universe cosmology. Recently, real-time semi-classical techniques based on ensembles of lattice simulations were applied to the problem of false vacuum decay. In this context, or any other lattice simulation, the effective potential experienced by long-wavelength modes is not the same as the bare potential. To make quantitative predictions using the real-time semi-classical techniques, it is therefore necessary to understand the redefinition of model parameters and the corresponding deformation of the vacuum state, as well as stochastic contributions that require modeling of unresolved subgrid modes. In this work, we focus on the former corrections and compute the expected modification of the true and false vacuum effective mass, which manifests as a modified dispersion relationship for linear fluctuations about the vacuum. We compare these theoretical predictions to numerical simulations and find excellent agreement. Motivated by this, we use the effective masses to fix the shape of a parameterized effective potential, and explore the modeling uncertainty associated with non-linear corrections. We compute the decay rates in both the Euclidean and real-time formalisms, finding qualitative agreement in the dependence on the UV cutoff. These calculations further demonstrate that a quantitative understanding of the rates requires additional corrections.

Keywords: vacuum; false vacuum; vacuum decay; lattice simulations; mass

Journal Title: Physical Review D
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.