LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Symmetric teleparallel Horndeski gravity

Horndeski gravity is the most general scalar-tensor theory with one scalar field leading to second-order Euler-Lagrange field equations for the metric and scalar field, and it is based on Riemannian… Click to show full abstract

Horndeski gravity is the most general scalar-tensor theory with one scalar field leading to second-order Euler-Lagrange field equations for the metric and scalar field, and it is based on Riemannian geometry. In this paper, we formulate an analogue version of Horndeski gravity in a symmetric teleparallel geometry which assumes that both the curvature (general) and torsion are vanishing and gravity is only related to nonmetricity. Our setup requires that the Euler-Lagrange equations for not only metric and scalar field but also connection should be at most second order. We find that the theory can be always recast as a sum of the Riemannian Horndeski theory and new terms that are purely teleparallel. Due to the nature of nonmetricity, there are many more possible ways of constructing second-order theories of gravity. In this regard, up to some assumptions, we find the most general $k$-essence extension of Symmetric Teleparallel Horndeski gravity. We also formulate a novel theory containing higher-order derivatives acting on nonmetricity while still respecting the second-order conditions, which can be recast as an extension of Kinetic Gravity Braiding. We finish our study by presenting the FLRW cosmological equations for our model.

Keywords: gravity; horndeski; horndeski gravity; symmetric teleparallel; geometry; order

Journal Title: Physical Review D
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.