LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measuring cosmic velocities with 21 cm intensity mapping and galaxy redshift survey cross-correlation dipoles

Photo from wikipedia

We investigate the feasibility of measuring the effects of peculiar velocities in large-scale structure using the dipole of the redshift-space cross-correlation function. We combine number counts of galaxies with brightness-temperature… Click to show full abstract

We investigate the feasibility of measuring the effects of peculiar velocities in large-scale structure using the dipole of the redshift-space cross-correlation function. We combine number counts of galaxies with brightness-temperature fluctuations from 21cm intensity mapping, demonstrating that the dipole may be measured at modest significance ($\lesssim 2\sigma$) by combining the upcoming radio survey CHIME with the future redshift surveys of DESI and Euclid. More significant measurements ($\lesssim~10\sigma$) will be possible by combining intensity maps from the SKA with these of DESI or Euclid, and an even higher significance measurement ($\lesssim 100\sigma$) may be made by combining observables completely internally to the SKA. We account for effects such as contamination by wide-angle terms, interferometer noise and beams in the intensity maps, non-linear enhancements to the power spectrum, stacking multiple populations, sensitivity to the magnification slope, and the possibility that number counts and intensity maps probe the same tracers. We also derive a new expression for the covariance matrix of multi-tracer redshift-space correlation function estimators with arbitrary orientation weights, which may be useful for upcoming surveys aiming at measuring redshift-space clustering with multiple tracers.

Keywords: intensity; cross correlation; intensity mapping; redshift

Journal Title: Physical Review D
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.