LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generic rotating regular black holes in general relativity coupled to nonlinear electrodynamics

Photo by kirp from unsplash

We construct regular rotating black hole and no-horizon spacetimes based on the recently introduced spherically symmetric generic regular black hole spacetimes related to electric or magnetic charge under nonlinear electrodynamics… Click to show full abstract

We construct regular rotating black hole and no-horizon spacetimes based on the recently introduced spherically symmetric generic regular black hole spacetimes related to electric or magnetic charge under nonlinear electrodynamics coupled to general relativity that for special values of the spacetime parameters reduce to the Bardeen and Hayward spacetimes. We show that the weak and strong energy conditions are violated inside the Cauchy horizons of these generic rotating black holes. We give the boundary between the rotating black hole and no-horizon spacetimes and determine the black hole horizons and the boundary of the ergosphere. We introduce the separated Carter equations for the geodesic motion in these rotating spacetimes. For the most interesting new class of the regular spacetimes, corresponding for magnetic charges to the Maxwell field in the weak field limit of the nonlinear electrodynamics, we determine the structure of the circular geodesics and discuss their properties. We study the epicyclic motion of a neutral particle moving along the stable circular orbits around the "Maxwellian" rotating regular black holes. We show that epicyclic frequencies measured by the distant observers and related to the oscillatory motion of the neutral test particle along the stable circular orbits around the rotating singular and regular Maxwellian black holes are always smaller than ones in the Kerr spacetime.

Keywords: regular black; black holes; black hole; electrodynamics; general relativity; nonlinear electrodynamics

Journal Title: Physical Review D
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.