LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quark orbital dynamics in the proton from lattice QCD: From Ji to Jaffe-Manohar orbital angular momentum

Photo by calwa3nli3w from unsplash

Given a Wigner distribution simultaneously characterizing quark transverse positions and momenta in a proton, one can directly evaluate their cross-product, i.e., quark orbital angular momentum. The aforementioned distribution can be… Click to show full abstract

Given a Wigner distribution simultaneously characterizing quark transverse positions and momenta in a proton, one can directly evaluate their cross-product, i.e., quark orbital angular momentum. The aforementioned distribution can be obtained by generalizing the proton matrix elements of quark bilocal operators which define transverse momentum-dependent parton distributions (TMDs); the transverse momentum information is supplemented with transverse position information by introducing an additional nonzero momentum transfer. A gauge connection between the quarks must be specified in the quark bilocal operators; the staple-shaped gauge link path used in TMD calculations yields the Jaffe-Manohar definition of orbital angular momentum, whereas a straight path yields the Ji definition. An exploratory lattice calculation, performed at the pion mass m_pi = 518 MeV, is presented which quasi-continuously interpolates between the two definitions and demonstrates that their difference can be clearly resolved. The resulting Ji orbital angular momentum is confronted with traditional evaluations based on Ji's sum rule. Jaffe-Manohar orbital angular momentum is enhanced in magnitude compared to its Ji counterpart.

Keywords: quark orbital; angular momentum; manohar orbital; orbital angular; jaffe manohar; momentum

Journal Title: Physical Review D
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.