LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determining the stiffness of the equation of state using low T /W dynamical instabilities in differentially rotating stars

Photo from wikipedia

We investigate the nature of low T/W dynamical instabilities in various ranges of the stiffness of the equation of state in differentially rotating stars. Here T is the rotational kinetic… Click to show full abstract

We investigate the nature of low T/W dynamical instabilities in various ranges of the stiffness of the equation of state in differentially rotating stars. Here T is the rotational kinetic energy, while W the gravitational binding energy. We analyze these instabilities in both a linear perturbation analysis and a three-dimensional hydrodynamical simulation. An unstable normal mode of a differentially rotating star is detected by solving an eigenvalue problem along the equatorial plane of the star. The physical mechanism of low T/W dynamical instabilities is also qualitatively confirmed by a scattering of sound waves between corotation and the surface caused by the corotation barrier. Therefore, we can draw a picture of existing pulsation modes unstabilized due to an amplified reflection of sound waves from the corotation barrier. The feature in the eigenfrequency and eigenfunction of the unstable mode in the linear analysis roughly agrees with that in the three-dimensional hydrodynamical simulation in Newtonian gravity. Moreover, the nature of the eigenfunction that oscillates between corotation and the surface for an unstable star requires reinterpretation of pulsation modes in differentially rotating stars. Finally, we propose a manner by which to constrain the stiffness of the equation of state by the direct detection of mode decomposed gravitational waveforms.

Keywords: low dynamical; dynamical instabilities; equation state; rotating stars; stiffness equation; differentially rotating

Journal Title: Physical Review D
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.