LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Presence of a critical endpoint in the QCD phase diagram from the net-baryon number fluctuations

Photo from wikipedia

The net-baryon number fluctuations for three-flavor quark matter are computed within the Polyakov extended Nambu$-$Jona-Lasinio model. Two models with vanishing and nonvanishing vector interactions are considered. While the former predicts… Click to show full abstract

The net-baryon number fluctuations for three-flavor quark matter are computed within the Polyakov extended Nambu$-$Jona-Lasinio model. Two models with vanishing and nonvanishing vector interactions are considered. While the former predicts a critical end point (CEP) in the phase diagram, the latter predicts no CEP. We show that the nonmonotonic behavior of the susceptibilities in the phase diagram is still present even in the absence of a CEP. Therefore, from the nonmonotonic behavior of the susceptibilities solely, one cannot assume the existence of a CEP. We analyze other possible properties that may distinguish the two scenarios, and determine the behavior of the net-baryon number fluctuations and the velocity of sound along several isentropes, with moderate and small values. It is shown that the value of the susceptibilities ratios and the velocity of sound at two or three isentropic lines could possibly allow to distinguish both scenarios, a phase diagram with or without CEP. Smoother behaviors of these quantities may indicate the nonexistence of a CEP. We also discuss the critical behavior of the strange sector.

Keywords: number fluctuations; net baryon; baryon number; phase diagram

Journal Title: Physical Review D
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.