LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum correlators in Friedmann spacetimes: The omnipresent de Sitter spacetime and the invariant vacuum noise

Photo by glenncarstenspeters from unsplash

We discuss several aspects of quantum field theory of a scalar field in a Friedmann universe, clarifying and highlighting several conceptual and technical issues. (A) We show that one can… Click to show full abstract

We discuss several aspects of quantum field theory of a scalar field in a Friedmann universe, clarifying and highlighting several conceptual and technical issues. (A) We show that one can map the dynamics of (1) a massless scalar field in a universe with power law expansion to (2) a massive scalar field in the de Sitter spacetime, which allows us to understand several features of either system and clarifies several issues related to the massless limit. (B) We obtain a useful integral representation for the Euclidean Green's function for the de Sitter spacetime, by relating it to the solution of a hypothetical electrostatic problem in five dimensions. This is helpful in the study of several relevant limits. (C) We recover that in any Friedmann universe, sourced by a negative pressure fluid, the Wightman function for a massless scalar field is divergent. This shows that the divergence of Wightman function for the massless field in the de Sitter spacetime is just a special, limiting, case of this general phenomenon. (D) We provide a generally covariant procedure for defining the power spectrum of vacuum fluctuations in terms of the different Killing vectors present in the spacetime. This allows one to study the interplay of the choice of vacuum state and the nature of the power spectrum in different coordinate systems, in the de Sitter universe, in a unified manner. (Truncated Abstract; see the paper for full Abstract.)

Keywords: field; vacuum; scalar field; sitter spacetime

Journal Title: Physical Review D
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.