The first measurement of the diffuse background spectrum at 0.8-1.7 $\mu \rm{m}$ from the CIBER experiment has revealed a significant excess of the cosmic infrared background (CIB) radiation compared to… Click to show full abstract
The first measurement of the diffuse background spectrum at 0.8-1.7 $\mu \rm{m}$ from the CIBER experiment has revealed a significant excess of the cosmic infrared background (CIB) radiation compared to the theoretically expected spectrum. We revisit the hypothesis that decays of axionlike particle (ALP) can explain this excess, extending previous analyses to the case of a warm relic population. We show that such a scenario is not excluded by anisotropy measurements nor by stellar cooling arguments. Moreover, we find that the increased extragalactic background light (EBL) does not contradict observations of blazar spectra. Furthermore, the increased EBL attenuates the diffuse TeV gamma-ray flux and alleviates the tension between the detected neutrino and gamma ray fluxes.
               
Click one of the above tabs to view related content.