LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Proton-philic spin-dependent inelastic dark matter as a viable explanation of DAMA/LIBRA-phase2

Photo by austriannationallibrary from unsplash

We show that the Weakly Interacting Massive Particle scenario of proton-philic spin-dependent inelastic Dark Matter (pSIDM) can still provide a viable explanation of the observed DAMA modulation amplitude in compliance… Click to show full abstract

We show that the Weakly Interacting Massive Particle scenario of proton-philic spin-dependent inelastic Dark Matter (pSIDM) can still provide a viable explanation of the observed DAMA modulation amplitude in compliance with the constraints from other experiments after the release of the DAMA/LIBRA-phase2 data and including the recent bound from COSINE-100, that uses the same $NaI$ target of DAMA. The pSIDM scenario provided a viable explanation of DAMA/LIBRA--phase1 both for a Maxwellian WIMP velocity distribution and in a halo-independent approach. At variance with DAMA/LIBRA-phase1, for which the modulation amplitudes showed an isolated maximum at low energy, the DAMA/LIBRA-phase2 spectrum is compatible to a monotonically decreasing one. Moreover, due to its lower threshold, it is sensitive to WIMP-iodine interactions at low WIMP masses. Due to the combination of these two effects pSIDM can now explain the yearly modulation observed by DAMA/LIBRA only when the WIMP velocity distribution departs from a standard Maxwellian. In this case the WIMP mass $m_{\chi}$ and mass splitting $\delta$ fall in the approximate ranges 7 GeV $\lesssim m_{\chi}\lesssim$ 17 GeV and 18 keV$\lesssim\delta\lesssim$29 keV. The recent COSINE-100 bound is naturally evaded in the pSDIM scenario due to its large expected modulation fractions.

Keywords: dama; dama libra; libra phase2; viable explanation

Journal Title: Physical Review D
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.