LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neutron star pulse profiles in scalar-tensor theories of gravity

Photo by nevenkrcmarek from unsplash

The observation of the x-ray pulse profile emitted by hotspots on the surface of neutron stars offers a unique tool to measure the bulk properties of these objects, including their… Click to show full abstract

The observation of the x-ray pulse profile emitted by hotspots on the surface of neutron stars offers a unique tool to measure the bulk properties of these objects, including their masses and radii. The x-ray emission takes place at the star's surface, where the gravitational field is strong, making these observations an incise probe to examine the curvature of spacetime generated by these stars. Motivated by this and the upcoming data releases by x-ray missions, such as NICER (Neutron star Interior Composition Explorer), we present a complete toolkit to model pulse profiles of rotating neutron stars in scalar-tensor gravity. We find that in this class of theories the presence of the scalar field affects the pulse profile's overall shape, producing strong deviations from the General Relativity expectation. This finding opens the possibility of potentially using x-ray pulse profile data to obtain new constraints on scalar-tensor gravity, if the pulse profile is found to be in agreement with General Relativity.

Keywords: scalar tensor; neutron star; pulse profile; gravity; star

Journal Title: Physical Review D
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.