LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gravitational floating orbits around hairy black holes

Photo from wikipedia

We show that gravitational floating orbits may exist for black holes with rotating hairs. These black hole hairs could originate from the superradiant growth of a light axion field around… Click to show full abstract

We show that gravitational floating orbits may exist for black holes with rotating hairs. These black hole hairs could originate from the superradiant growth of a light axion field around the rotating black holes. If a test particle rotates around the black hole, its tidal field may resonantly trigger the dynamical transition between a co-rotating state and a dissipative state of the axion cloud. A tidal bulge is generated by the beating of modes, which feeds angular momentum back to the test particle. Following this mechanism, an extreme-mass-ratio-inspiral (EMRI) system, as a source for LISA, may face delayed merger as the EMRI orbit stalls by the tidal response of the cloud, until the cloud being almost fully dissipated. If the cloud depletes slower than the average time separation between EMRI mergers, it may lead to interesting interaction between multiple EMRI objects at comparable radii. Inclined EMRIs are also expected to migrate towards the black hole equatorial plane due to the tidal coupling and gravitational-wave dissipation. Floating stellar-mass back holes or stars around the nearby intermediate-mass black holes may generate strong gravitational-wave emission detectable by LISA.

Keywords: gravitational floating; black hole; black holes; cloud; orbits around; floating orbits

Journal Title: Physical Review D
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.