LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stepping-stone sampling algorithm for calculating the evidence of gravitational wave models

Photo from wikipedia

Bayesian statistical inference has become increasingly important for the analysis of observations from the Advanced LIGO and Advanced Virgo gravitational-wave detectors. To this end, iterative simulation techniques, in particular nested… Click to show full abstract

Bayesian statistical inference has become increasingly important for the analysis of observations from the Advanced LIGO and Advanced Virgo gravitational-wave detectors. To this end, iterative simulation techniques, in particular nested sampling and parallel tempering, have been implemented in the software library LALInference to sample from the posterior distribution of waveform parameters of compact binary coalescence events. Nested sampling was mainly developed to calculate the marginal likelihood of a model but can produce posterior samples as a by-product. Thermodynamic integration is employed to calculate the evidence using samples generated by parallel tempering but has been found to be computationally demanding. Here we propose the stepping-stone sampling algorithm, originally proposed by Xie et al. (2011) in phylogenetics and a special case of path sampling, as an alternative to thermodynamic integration. The stepping-stone sampling algorithm is also based on samples from the power posteriors of parallel tempering but has superior performance as fewer temperature steps and thus computational resources are needed to achieve the same accuracy. We demonstrate its performance and computational costs in comparison to thermodynamic integration and nested sampling in a simulation study and a case study of computing the marginal likelihood of a binary black hole signal model applied to simulated data from the Advanced LIGO and Advanced Virgo gravitational wave detectors. To deal with the inadequate methods currently employed to estimate the standard errors of evidence estimates based on power posterior techniques, we propose a novel block bootstrap approach and show its potential in our simulation study and LIGO application.

Keywords: stepping stone; gravitational wave; sampling algorithm; stone sampling; evidence

Journal Title: Physical Review D
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.