LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Charged spherically symmetric black holes in f(R) gravity and their stability analysis

Photo by kirp from unsplash

A new class of analytic charged spherically symmetric black hole solutions, which behave asymptotically as flat or (A)dS spacetimes, is derived for specific classes of $f(R)$ gravity, i.e., $f(R)=R-2\alpha\sqrt{R}$ and… Click to show full abstract

A new class of analytic charged spherically symmetric black hole solutions, which behave asymptotically as flat or (A)dS spacetimes, is derived for specific classes of $f(R)$ gravity, i.e., $f(R)=R-2\alpha\sqrt{R}$ and $f(R)=R-2\alpha\sqrt{R-8\Lambda}$, where $\Lambda$ is the cosmological constant. These black holes are characterized by the dimensional parameter $\alpha$ that makes solutions deviate from the standard solutions of general relativity. The Kretschmann scalar and squared Ricci tensor are shown to depend on the parameter $\alpha$ which is not allowed to be zero. Thermodynamical quantities, like entropy, Hawking temperature, quasi-local energy and the Gibbs free energy are calculated. The interesting result of these calculations is the possibility of a negative black hole entropy. Furthermore, present calculations show that for negative energy, particles inside a black hole, behave as if they have a negative entropy. This fact gives rise to instability for $f_{RR}<0$.

Keywords: spherically symmetric; symmetric black; black hole; black holes; gravity; charged spherically

Journal Title: Physical Review D
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.