LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Approximate dynamical eigenmodes of the Ising model with local spin-exchange moves.

Photo by thinkmagically from unsplash

We establish that the Fourier modes of the magnetization serve as the dynamical eigenmodes for the two-dimensional Ising model at the critical temperature with local spin-exchange moves, i.e., Kawasaki dynamics.… Click to show full abstract

We establish that the Fourier modes of the magnetization serve as the dynamical eigenmodes for the two-dimensional Ising model at the critical temperature with local spin-exchange moves, i.e., Kawasaki dynamics. We obtain the dynamical scaling properties for these modes and use them to calculate the time evolution of two dynamical quantities for the system, namely, the autocorrelation function and the mean-square deviation of the line magnetizations. At intermediate times 1≲t≲L^{z_{c}}, where z_{c}=4-η=15/4 is the dynamical critical exponent of the model, we find that the line magnetization undergoes anomalous diffusion. Following our recent work on anomalous diffusion in spin models, we demonstrate that the generalized Langevin equation with a memory kernel consistently describes the anomalous diffusion, verifying the corresponding fluctuation-dissipation theorem with the calculation of the force autocorrelation function.

Keywords: local spin; ising model; model; spin; spin exchange; dynamical eigenmodes

Journal Title: Physical review. E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.