LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boundary homogenization for trapping patchy particles.

Many systems in chemical and biological physics involve diffusing particles being trapped by absorbing patches on otherwise reflecting surfaces. Such systems are commonly studied by boundary homogenization, in which the… Click to show full abstract

Many systems in chemical and biological physics involve diffusing particles being trapped by absorbing patches on otherwise reflecting surfaces. Such systems are commonly studied by boundary homogenization, in which the heterogenous boundary condition on the patchy surface is replaced by a uniform boundary condition involving a single parameter which encapsulates the effective trapping properties of the surface. In prior works on boundary homogenization, the surface is patchy and the diffusing particles are homogeneous. In this paper, we consider the opposite scenario in which a homogenous surface traps patchy particles, which could model proteins with localized binding sites, cells with membrane receptors, or patchy colloids or nanoparticles. We derive an explicit formula for the effective trapping rate which reveals a fundamental interplay between the translational and rotational diffusivities of the patchy particle, a phenomenon not typically seen in boundary homogenization. Motivated by receptors on the cell membrane, our analysis also allows for the possibility that the patches diffuse on the surface of the particle. We formulate the system in terms of a high-dimensional, time-dependent, anisotropic diffusion equation and employ matched asymptotic analysis to derive the effective trapping rate. We confirm our results by detailed numerical simulations.

Keywords: boundary homogenization; patchy particles; effective trapping; surface; homogenization; homogenization trapping

Journal Title: Physical Review E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.