LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Linear and angular motion of self-diffusiophoretic Janus particles.

Photo by jareddrice from unsplash

We theoretically study the active motion of self-diffusiophoretic Janus particles (JPs) using the Onsager-Casimir reciprocal relations. The linear and angular velocity of a single JP are shown to respectively result… Click to show full abstract

We theoretically study the active motion of self-diffusiophoretic Janus particles (JPs) using the Onsager-Casimir reciprocal relations. The linear and angular velocity of a single JP are shown to respectively result from a coupling of electrochemical forces to the fluid flow fields induced by a force and torque on the JP. A model calculation is provided for half-capped JPs catalyzing a chemical reaction of solutes at their surface by reducing the continuity equations of the reacting solutes to Poisson equations for the corresponding electrochemical fields. We find that an anisotropic surface reactivity alone is enough to give rise to active linear motion of a JP, whereas active rotation only occurs if the JP is not axisymmetric. In the absence of specific interactions with the solutes, the active linear velocity of the JP is shown to be related to the stoichiometrically weighted sum of the friction coefficients (or hydrodynamic radii) of the reacting solutes. Our reciprocal treatment further suggests that a specific interaction with the solutes is required to observe far-field diffusiophoretic interactions between JPs, which rely on an interfacial solute excess at the JP surface. Most notably, our approach applies beyond the boundary-layer approximation and accounts for both the diffusio- and electrophoretic nature of active motion.

Keywords: janus particles; diffusiophoretic janus; motion self; self diffusiophoretic; linear angular; motion

Journal Title: Physical review. E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.