LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamics of two-dimensional flow around a circular cylinder with flexible filaments attached.

Photo from wikipedia

A direction adaptive approach for the reduction of drag and the suppression of lift fluctuation in flow passing a circular cylinder is developed. Flexible filaments are attached to the surface… Click to show full abstract

A direction adaptive approach for the reduction of drag and the suppression of lift fluctuation in flow passing a circular cylinder is developed. Flexible filaments are attached to the surface of the cylinder, and different configurations, including the number, lengths, and angles of attachment of the filaments, as well as their tension and bending features, are investigated. In this comprehensive numerical study, the configuration with two filaments 180^{o} apart is found to be optimal for drag reduction and lift fluctuation suppression and is adaptive to the direction of the incoming flow. A drag reduction of 10.8% and a lift fluctuation suppression of 34.6% can be achieved as one filament is attached to the rear stagnation point and the other to the front stagnation point. The hairy coating resembled by 12 evenly attached filaments is also considered. Though marked drag reduction has not been found for this configuration, we leave it an open question for future studies to explore various properties of the filaments in turbulent flow, whose interaction with the filaments would be significant.

Keywords: reduction; circular cylinder; cylinder; flexible filaments; flow; filaments attached

Journal Title: Physical Review E
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.