LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selectivity mechanism of magnesium and calcium in cation-binding pocket structures of phosphotyrosine.

Photo from wikipedia

Magnesium (Mg^{2+}) and calcium (Ca^{2+}) are of essential importance in biological activity, but the molecular understanding of their selectivity is still lacking. Here, based on density functional theory calculations and… Click to show full abstract

Magnesium (Mg^{2+}) and calcium (Ca^{2+}) are of essential importance in biological activity, but the molecular understanding of their selectivity is still lacking. Here, based on density functional theory calculations and ab initio molecular dynamics simulations, we show that Mg^{2+} binds more tightly to phosphotyrosine (pTyr) and stabilizes the conformation of pTyr, while Ca^{2+} binds more flexibly to pTyr with less structural stability. The key for the selectivity is attributed to the cation-π interactions between the hydrated cations and the aromatic ring together with the synergic interaction between the cations and the side groups in pTyr to form a cation-binding pocket structure, which we refer as side-group-synergetic hydrated cation-π interaction. The existence and relative strength of the cation-π interactions in the pocket structures as well as their structural stability have been demonstrated experimentally with ultraviolet (UV) absorption spectra and ^{1}H NMR spectra. The findings offer insight into understanding the selectivity of Mg^{2+} and Ca^{2+} in a variety of biochemical and physiological essential processes.

Keywords: magnesium calcium; cation; binding pocket; cation binding; selectivity

Journal Title: Physical Review E
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.