LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase separation in a two-dimensional binary colloidal mixture by quorum sensing activity.

Photo by robbie36 from unsplash

We present results from Langevin dynamics simulations of a glassy active-passive mixture of soft-repulsive binary colloidal disks. Activity on the smaller particles is applied according to the quorum sensing scheme,… Click to show full abstract

We present results from Langevin dynamics simulations of a glassy active-passive mixture of soft-repulsive binary colloidal disks. Activity on the smaller particles is applied according to the quorum sensing scheme, in which a smaller particle will be active for a persistence time if its local nearest neighbors are equal to or greater than a certain threshold value. We start with a passive glassy state of the system and apply activity to the smaller particles, which shows a nonmonotonous glassy character of the active particles with the persistence time of the active force, from its passive limit (zero activity). On the other hand, passive particles of the active-passive mixture phase separate at the intermediate persistence time of the active force, resulting in the hexatic-liquid and solid-liquid phases. Thus, our system shows three regimes as active glass, phase separation, and active liquid, as the persistence time increases from its smaller values. We show that the solidlike and hexatic phases consisting of passive large particles are stable due to the smaller momentum transfer from active to passive particles, compared to the higher persistence time where the positional and orientational ordering vanishes. Our model is relevant to active biological systems, where glassy dynamics is present, e.g., bacterial cytoplasm, biological tissues, dense quorum sensing bacteria, and synthetic smart amorphous glasses.

Keywords: quorum sensing; mixture; activity; persistence time

Journal Title: Physical Review E
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.