LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes.

Photo from wikipedia

Compressible lattice Boltzmann model on standard lattices [M. H. Saadat, F. Bösch, and I. V. Karlin, Phys. Rev. E 99, 013306 (2019).2470-004510.1103/PhysRevE.99.013306] is extended to deal with complex flows on unstructured grid.… Click to show full abstract

Compressible lattice Boltzmann model on standard lattices [M. H. Saadat, F. Bösch, and I. V. Karlin, Phys. Rev. E 99, 013306 (2019).2470-004510.1103/PhysRevE.99.013306] is extended to deal with complex flows on unstructured grid. Semi-Lagrangian propagation [A. Krämer et al., Phys. Rev. E 95, 023305 (2017).2470-004510.1103/PhysRevE.95.023305] is performed on an unstructured second-order accurate finite-element mesh and a consistent wall boundary condition is implemented which makes it possible to simulate compressible flows over complex geometries. The model is validated through simulation of Sod shock tube, subsonic and supersonic flow over NACA0012 airfoil and shock-vortex interaction in Schardin's problem. Numerical results demonstrate that the present model on standard lattices is able to simulate compressible flows involving shock waves on unstructured meshes with good accuracy and without using any artificial dissipation or limiter.

Keywords: semi lagrangian; lattice boltzmann; model; flows unstructured; boltzmann model; compressible flows

Journal Title: Physical Review E
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.