LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin depolarization induced by self-generated magnetic fields during cylindrical implosions.

Photo from wikipedia

Spin-polarized fuels are promising for inertial confinement fusion due to the enhanced fusion cross section. One significant concern of spin-polarized inertial confinement fusion is whether the nuclei polarization could survive… Click to show full abstract

Spin-polarized fuels are promising for inertial confinement fusion due to the enhanced fusion cross section. One significant concern of spin-polarized inertial confinement fusion is whether the nuclei polarization could survive in the implosions and contribute to ignitions. Here we present numerical simulation methods and results of spin dynamics of polarized deuterium-tritium fuels in strong self-generated magnetic fields during the implosions of dense cylindrical shells. The magnetic field generation and evolution is modeled with generalized Ohm's laws combined with hydrodynamic equations. The spin dynamics is investigated with a particle-tracking method, by solving the spin precession equations of tracked particles. Rayleigh-Taylor instabilities and Richtmyer-Meshkov instabilities are found to be the main cause of depolarization. Hydrodynamic instabilities lead to depolarization of nuclei near the hot-spot shell interface, and an asymmetric shock front leads to depolarization of nuclei inside a hot spot. Deuterium polarization is more stable than tritium polarization due to its smaller gyromagnetic ratio. Low-mode perturbations can lead to higher depolarization inside a hot spot than high-mode perturbations. In the multimode simulations, the modes around 16-32 are significant for hot-spot depolarization.

Keywords: magnetic fields; self generated; generated magnetic; depolarization; hot spot

Journal Title: Physical Review E
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.