LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of populations with strategy-dependent time delays.

Photo from wikipedia

We study the effects of strategy-dependent time delays on the equilibria of evolving populations. It is well known that time delays may cause oscillations in dynamical systems. Here we report… Click to show full abstract

We study the effects of strategy-dependent time delays on the equilibria of evolving populations. It is well known that time delays may cause oscillations in dynamical systems. Here we report a novel behavior. We show that microscopic models of evolutionary games with strategy-dependent time delays lead to a new type of replicator dynamics. It describes the time evolution of fractions of the population playing given strategies and the size of the population. Unlike in all previous models, the stationary states of such dynamics depend continuously on time delays. We show that in games with an interior stationary state (a globally asymptotically stable equilibrium in the standard replicator dynamics), at certain time delays it may disappear or there may appear another interior stationary state. In the Prisoner's Dilemma game, for time delays of cooperation smaller than time delays of defection, there appears an unstable interior equilibrium, and therefore for some initial conditions the population converges to the homogeneous state with just cooperators.

Keywords: time; strategy dependent; dependent time; time delays; evolution populations

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.