Recreational fishing is a highly socioecological process. Although recreational fisheries are self-regulating and resilient, changing anthropogenic pressure drives these fisheries to overharvest and collapse. Here, we evaluate the effect of… Click to show full abstract
Recreational fishing is a highly socioecological process. Although recreational fisheries are self-regulating and resilient, changing anthropogenic pressure drives these fisheries to overharvest and collapse. Here, we evaluate the effect of demographic and environmental stochasticity for a social-ecological two-species fish model. In the presence of noise, we find that an increase in harvesting rate drives a critical transition from high-yield-low-price fisheries to low-yield-high-price fisheries. To calculate stochastic trajectories for demographic noise, we derive the master equation corresponding to the model and perform a Monte Carlo simulation. Moreover, the analysis of the probabilistic potential and mean first-passage time reveals the resilience of alternative steady states. We also describe the efficacy of a few generic indicators in forecasting sudden transitions. Furthermore, we show that incorporating social norms on the model allows a moderate fish density to maintain despite higher harvesting rates. Overall, our study highlights the occurrence of critical transitions in a stochastic social-ecological model and suggests ways to mitigate them.
               
Click one of the above tabs to view related content.