LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gradient sensing via cell communication.

Photo by codioful from unsplash

Experimental evidence lends support to the conjecture that cell-to-cell communication plays a role in the gradient sensing of chemical species by certain chains of cells. Models have been formulated to… Click to show full abstract

Experimental evidence lends support to the conjecture that cell-to-cell communication plays a role in the gradient sensing of chemical species by certain chains of cells. Models have been formulated to explore this idea. For cells with no identifiable sensing structure, Mugler et al. [Proc. Natl. Acad. Sci. (U.S.A.) 113, E689 (2016)10.1073/pnas.1509597112] have defined a particular local excitation, global inhibition (LEGI) model that pits nearest-neighbor communication against local reactions in a noisy environment to suggest how this sensing capability might arise in a physical system. In this study, we generalize the nearest-neighbor communication mechanism in the aforementioned LEGI model in order to explore the extent to which the gradient sensing characteristics depend on the parametrization of the communication itself, as well as on the cell size, the radius of influence of neighboring cells, and the influence of the background noise. Using our generalization and a collection of particular candidate communication models, we find that the precision of gradient sensing is indeed sensitive to the particular communication model, and we derive physical and analytic explanations for these results. The framework established and the associated results should prove useful in understanding the appropriateness of particular cell-to-cell communication models in gradient sensing studies.

Keywords: sensing via; gradient sensing; communication; cell communication

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.