LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable depletion force in active and crowded environments.

Photo from wikipedia

We adopt two-dimensional Langevin dynamics simulations to study the effective interactions between two passive colloids in a bath crowded with active particles. We mainly pay attention to the significant effects… Click to show full abstract

We adopt two-dimensional Langevin dynamics simulations to study the effective interactions between two passive colloids in a bath crowded with active particles. We mainly pay attention to the significant effects of active particle size, crowding-activity coupling, and chirality. First, a transition of depletion force from repulsion to attraction is revealed by varying particle size. Moreover, larger active crowders with sufficient activity can generate strong attractive force, which is in contrast to the cage effect in passive media. It is interesting that the attraction induced by large active crowders follows a linear scaling with the persistence length of active particles. Second, the effective force also experiences a transition from repulsion to attraction as volume fraction increases, as a consequence of the competition between the two contrastive factors of activity and crowding. As bath volume fraction is relatively small, activity generates a dominant repulsion force, while as the bath becomes concentrated, crowding-induced attraction becomes overwhelming. Lastly, in a chiral bath, we observe a very surprising oscillation phenomenon of active depletion force, showing an evident quasiperiodic variation with increasing chirality. Aggregation of active particles in the vicinity of the colloids is carefully examined, which serves as a reasonable picture for our observations. Our findings provide an inspiring strategy for the tunable active depletion force by crowding, activity, and chirality.

Keywords: bath; activity; force; attraction; depletion force

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.