LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diverse densest binary sphere packings and phase diagram.

Photo from wikipedia

We revisit the densest binary sphere packings (DBSPs) under periodic boundary conditions and present an updated phase diagram, including newly found 12 putative densest structures over the x-α plane, where… Click to show full abstract

We revisit the densest binary sphere packings (DBSPs) under periodic boundary conditions and present an updated phase diagram, including newly found 12 putative densest structures over the x-α plane, where x is the relative concentration and α is the radius ratio of the small and large spheres. To efficiently explore the DBSPs, we develop an unbiased random search approach based on both the piling-up method to generate initial structures in an unbiased way and the iterative balance method to optimize the volume of a unit cell while keeping the overlap of hard spheres minimized. With those two methods, we have discovered 12 putative DBSPs and thereby the phase diagram is updated, while our results are consistent with those of a previous study [Hopkins et al., Phys. Rev. E 85, 021130 (2012)]PLEEE81539-375510.1103/PhysRevE.85.021130 with a small correction for the case of 12 or fewer spheres in the unit cell. Five of the discovered 12 DBSPs are identified in the small radius range of 0.42≤α≤0.50, where several structures are competitive to each other with respect to packing fraction. Through the exhaustive search, diverse dense packings are discovered and, accordingly, we find that packing structures achieve high packing fractions by introducing distortion and/or combining a few local dense structural units. Furthermore, we investigate the correspondence of the DBSPs with crystals based on the space group. The result shows that many structural units in real crystals, e.g., LaH_{10} and SrGe_{2-δ} being high-pressure phases, can be understood as DBSPs. The correspondence implies that the densest sphere packings can be used effectively as structural prototypes for searching complex crystal structures, especially for high-pressure phases.

Keywords: binary sphere; sphere packings; phase diagram; densest binary

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.