Vertically vibrating a liquid bath at two frequencies, f and f/2, having a constant relative phase difference can give rise to self-propelled superwalking droplets on the liquid surface. We have… Click to show full abstract
Vertically vibrating a liquid bath at two frequencies, f and f/2, having a constant relative phase difference can give rise to self-propelled superwalking droplets on the liquid surface. We have numerically investigated such superwalking droplets in the regime where the phase difference varies slowly with time. We predict the emergence of stop-and-go motion of droplets, consistent with experimental observations [Valani et al. Phys. Rev. Lett. 123, 024503 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.024503]. Our simulations in the parameter space spanned by the droplet size and the rate of traversal of the phase difference uncover three different types of droplet motion: back-and-forth, forth-and-forth, and irregular stop-and-go motion, which we explore in detail. Our findings lay a foundation for further studies of dynamically driven droplets, whereby the droplet's motion may be guided by engineering arbitrary time-dependent phase difference functions.
               
Click one of the above tabs to view related content.