Structural balance in social complex networks has been modeled with two types of triplet interactions. First is the interaction that only considers the dynamic role for links or relationships (Heider… Click to show full abstract
Structural balance in social complex networks has been modeled with two types of triplet interactions. First is the interaction that only considers the dynamic role for links or relationships (Heider balance), and second is the interaction that considers both individual opinions (nodes) and relationships in network dynamics (coevolutionary balance). The question is, as the temperature varies, which is a measure of the average irrationality of individuals in a society, how structural balance can be created or destroyed by each of these triplet interactions. We use statistical mechanics methods and observe through analytical calculation and numerical simulation that unlike the Heider balance triplet interaction which has a discrete phase transition, the coevolutionary balance has a continuous phase transition. The critical temperature of the presented model changes with the root square of the network size, which is a linear dependence in the thermal Heider balance.
               
Click one of the above tabs to view related content.