LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Critical scaling of compression-driven jamming of athermal frictionless spheres in suspension.

Photo from wikipedia

We study numerically a system of athermal, overdamped, frictionless spheres, as in a non-Brownian suspension, in two and three dimensions. Compressing the system isotropically at a fixed rate ε[over ̇],… Click to show full abstract

We study numerically a system of athermal, overdamped, frictionless spheres, as in a non-Brownian suspension, in two and three dimensions. Compressing the system isotropically at a fixed rate ε[over ̇], we investigate the critical behavior at the jamming transition. The finite compression rate introduces a control timescale, which allows one to probe the critical timescale associated with jamming. As was found previously for steady-state shear-driven jamming, we find for compression-driven jamming that pressure obeys a critical scaling relation as a function of packing fraction ϕ and compression rate ε[over ̇], and that the bulk viscosity p/ε[over ̇] diverges upon jamming. A scaling analysis determines the critical exponents associated with the compression-driven jamming transition. Our results suggest that stress-isotropic, compression-driven jamming may be in the same universality class as stress-anisotropic, shear-driven jamming.

Keywords: compression; critical scaling; frictionless spheres; driven jamming; scaling compression; compression driven

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.