LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long-loop feedback vertex set and dismantling on bipartite factor graphs.

Photo from wikipedia

Network dismantling aims at breaking a network into disconnected components and attacking vertices that intersect with many loops has proven to be a most efficient strategy. Yet existing loop-focusing methods… Click to show full abstract

Network dismantling aims at breaking a network into disconnected components and attacking vertices that intersect with many loops has proven to be a most efficient strategy. Yet existing loop-focusing methods do not distinguish the short loops within densely connected local clusters (e.g., cliques) from the long loops connecting different clusters, leading to lowered performance of these algorithms. Here we propose a new solution framework for network dismantling based on a two-scale bipartite factor-graph representation, in which long loops are maintained while local dense clusters are simplistically represented as individual factor nodes. A mean-field spin-glass theory is developed for the corresponding long-loop feedback vertex set problem. The framework allows for the advancement of various existing dismantling algorithms; we developed the new version of two benchmark algorithms BPD (which uses the message-passing equations of the spin-glass theory as the solver) and CoreHD (which is fastest among well-performing algorithms). New solvers outperform current state-of-the-art algorithms by a considerable margin on networks of various sorts. Further improvement in dismantling performance is achievable by opting flexibly the choice of local clusters.

Keywords: bipartite factor; long loop; loop feedback; vertex set; factor; feedback vertex

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.