Mixed-mode oscillations (MMOs) are a complex dynamical behavior in which each cycle of oscillation consists of one or more large amplitude spikes followed by one or more small amplitude peaks.… Click to show full abstract
Mixed-mode oscillations (MMOs) are a complex dynamical behavior in which each cycle of oscillation consists of one or more large amplitude spikes followed by one or more small amplitude peaks. MMOs typically undergo period-adding bifurcations under parameter variation. We demonstrate here, in a set of three identical, linearly coupled van der Pol oscillators, a scenario in which MMOs exhibit a period-doubling sequence to chaos that preserves the MMO structure, as well as period-adding bifurcations. We characterize the chaotic nature of the MMOs and attribute their existence to a master-slave-like forcing of the inner oscillator by the outer two with a sufficient phase difference between them. Simulations of a single nonautonomous oscillator forced by two sine functions support this interpretation and suggest that the MMO period-doubling scenario may be more general.
               
Click one of the above tabs to view related content.