We conducted numerical experiments to investigate the mixing of stratified suspensions containing different types of particles. We used a point-force two-way coupling method. We studied the mixing behavior of stratified… Click to show full abstract
We conducted numerical experiments to investigate the mixing of stratified suspensions containing different types of particles. We used a point-force two-way coupling method. We studied the mixing behavior of stratified suspensions and we discovered two types of mixing: microscopic (individual-particle-level) and macroscopic (vessel-scale) collective mixing. In addition, we examined the vertical mixing speed of the stratified suspension. We used a simple theoretical model to analyze the fingering settling velocity. Then we introduced a nondimensional number representing the difference in collectivities of the upper and lower suspensions while accounting for particle terminal velocities. We discovered that the proposed nondimensional parameter has a negative sign that distinguishes the mixing form of only microscopic individual-particle-level mixing and a positive value that predicts the speed of macroscopic collective mixing of stratified suspensions.
               
Click one of the above tabs to view related content.