LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Approximate optimization, sampling, and spin-glass droplet discovery with tensor networks.

Photo from wikipedia

We devise a deterministic algorithm to efficiently sample high-quality solutions of certain spin-glass systems that encode hard optimization problems. We employ tensor networks to represent the Gibbs distribution of all… Click to show full abstract

We devise a deterministic algorithm to efficiently sample high-quality solutions of certain spin-glass systems that encode hard optimization problems. We employ tensor networks to represent the Gibbs distribution of all possible configurations. Using approximate tensor-network contractions, we are able to efficiently map the low-energy spectrum of some quasi-two-dimensional Hamiltonians. We exploit the local nature of the problems to compute spin-glass droplets geometries, which provides a new form of compression of the low-energy spectrum. It naturally extends to sampling, which otherwise, for exact contraction, is #P-complete. In particular, for one of the hardest known problem-classes devised on chimera graphs known as deceptive cluster loops and for up to 2048 spins, we find on the order of 10^{10} degenerate ground states in a single run of our algorithm, computing better solutions than have been reported on some hard instances. Our gradient-free approach could provide new insight into the structure of disordered spin-glass complexes, with ramifications both for machine learning and noisy intermediate-scale quantum devices.

Keywords: glass; approximate optimization; spin glass; tensor networks

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.