LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overcoming the complexity barrier of the dynamic message-passing method in networks with fat-tailed degree distributions.

Photo from wikipedia

The dynamic cavity method provides the most efficient way to evaluate probabilities of dynamic trajectories in systems of stochastic units with unidirectional sparse interactions. It is closely related to sum-product… Click to show full abstract

The dynamic cavity method provides the most efficient way to evaluate probabilities of dynamic trajectories in systems of stochastic units with unidirectional sparse interactions. It is closely related to sum-product algorithms widely used to compute marginal functions from complicated global functions of many variables, with applications in disordered systems, combinatorial optimization, and computer science. However, the complexity of the cavity approach grows exponentially with the in-degrees of the interacting units, which creates a defacto barrier for the successful analysis of systems with fat-tailed in-degree distributions. In this paper, we present a dynamic programming algorithm that overcomes this barrier by reducing the computational complexity in the in-degrees from exponential to quadratic, whenever couplings are chosen randomly from (or can be approximated in terms of) discrete, possibly unit-dependent, sets of equidistant values. As a case study, we analyze the dynamics of a random Boolean network with a fat-tailed degree distribution and fully asymmetric binary ±J couplings, and we use the power of the algorithm to unlock the noise-dependent heterogeneity of stationary node activation patterns in such a system.

Keywords: overcoming complexity; degree distributions; complexity barrier; fat tailed; tailed degree

Journal Title: Physical review. E
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.